報告

航空機による上空の温室効果ガス観測の開始について ~ WMO/GAW 計画に貢献する気象庁の温室効果ガス観測~

地球環境・海洋部 環境気象管理官* 気象研究所**

1. はじめに

気象庁では、1976(昭和51)年から、世界気 象機関(World Meteorological Organization: WMO) の世界的な枠組みである大気バックグランド汚 染 観 測 網(Background Air Pollution Monitoring Network: BAPMoN)のもと、大気バックグラン ド汚染観測を実施している.このうち大気微量気 体の観測については、1987(昭和62)年に綾里(岩 手県)で二酸化炭素濃度の観測を開始して以降、 1993(平成5)年に南鳥島(東京都)で、1997(平 成9)年に与那国島(沖縄県)で、温室効果ガス 等の濃度の観測を順次開始している.また、1989 (平成元)年から気象庁が保有する海洋気象観測 船において洋上大気中及び海水中の温室効果ガス を観測しており、2010(平成22)年からは海洋 内部の二酸化炭素濃度等の観測を実施している.

深刻化している地球温暖化の将来予測の精度向 上を図るためには,温室効果ガスの分布の把握を 通じて,大気全体の温室効果ガスの挙動を明らか にしていくことが重要である.このため気象庁で は,陸上や海洋における温室効果ガスの観測に加 えて,これまで気象研究所等が研究目的として実 施してきた航空機を使用した観測を気象研究所と 協力して現業化し,2011(平成23)年から北西 太平洋上空における継続的な温室効果ガス観測を 実施することとした. 本稿では、新たに開始した航空機による上空の 温室効果ガス観測について紹介するとともに、気 象庁における温室効果ガス観測についても触れ る.

2. 温室効果ガスと地球温暖化

2.1 温室効果ガスの増加と地球温暖化

温室効果ガスとは、地球の表面から発せられ る放射(赤外線)を大気圏外に達する前に吸収 し、地球に向けて再放射する働き(温室効果)を 持つ気体のことである.二酸化炭素をはじめとす る温室効果ガスのほとんどは工業化時代の始まり (1750年)以降急速に増加しており、気象庁によ る世界各国の観測データの解析結果(第2.1図) によると、世界平均気温は1891(明治24)年~ 2010(平成22)年に100年あたり約0.68℃上昇 している.

気 候 変 動 に 関 す る 政 府 間 パ ネ ル (Intergovernmental Panel on Climate Change: IPCC) の第4次評価報告書は,気候システムの温暖化に は疑う余地がなく,人為起源の温室効果ガスの増 加によってもたらされた可能性が非常に高いとし ており,今後,これら人間活動の影響により極端 な高温や熱波,大雨の頻度は引き続き増加する可 能性が非常に高いともしている(IPCC, 2007).

このように、温室効果ガスの増加により引き起

^{*} 中村 雅道, 久保池 大輔, 岩坪 昇平, 齊藤 和幸, 花宮 義和, 辻 健太郎, 大森 英裕, 西 秀紘 ** 松枝 秀和, 澤 庸介, 坪井 一寬, 丹羽 洋介

第2.1図 世界の年平均気温平年差

細線(黒):各年の平均気温の基準値からの偏差,太線(青):偏差の5年移動平均,直線(赤):長期的な 変化傾向.基準値は1981~2010年の30年平均値.

こされた可能性が非常に高いとされている地球温 暖化は、生態系や人間社会に大きな影響を及ぼす 地球規模の環境問題となっている.

2.2 地球温暖化予測と温室効果ガスの挙動の 把握

生態系や人間社会に大きな影響を及ぼす地球温 暖化に適切に対応していくためには,地球温暖化 予測の精度を向上させていく必要がある.地球温 暖化が今後さらに進むと,海洋や陸面の二酸化炭 素の吸収能力が低下し,これが更なる地球温暖化 をもたらすことが指摘されている.地球温暖化の 予測精度を高めるためには,これらをも的確にと らえて温室効果ガスの大気全体での挙動を正確に 把握することが重要となってきている.

しかし,現在の陸上を中心とした温室効果ガス の観測網ではこれらの挙動を正確に把握するのに 必ずしも十分ではなく,主に陸上で排出されてい る温室効果ガスがどのように上空に拡散している のかを見積もるのに十分な温室効果ガスの観測デ ータは得られていない.

3. 温室効果ガス観測網

3.1 気象庁における温室効果ガス観測網

気象庁では現在,国内の3観測所(大気環境観 測所(綾里),南鳥島気象観測所(南鳥島),与那 国島特別地域気象観測所(与那国島))及び2隻 の海洋気象観測船(凌風丸,啓風丸)において温 室効果ガスの観測を実施している(第3.1図).

陸上における観測において最初に温室効果ガ スの観測を開始したのは綾里であり、BAPMoN の一環として 1987(昭和 62)年に二酸化炭素濃 度の定常観測を日本で初めて開始した. その後, BAPMoNの発展的枠組みとして1989(平成元) 年に設立された WMO の全球大気監視 (Global Atmosphere Watch: GAW) 計画の地域観測所とし て, 温室効果ガスに加え, 温室効果ガスの濃度に 影響を与えるガス(反応性ガス)やオゾン層破壊 物質の濃度の観測を順次開始している。1993(平 成5)年には、GAW計画の地域観測所よりもさ らに設置条件が厳しい GAW 計画の全球観測所 (2011(平成23)年現在で世界28か所)として 南鳥島で、さらに 1997 (平成 9) 年から GAW 計 画の地域観測所として与那国島で, それぞれ温 室効果ガス等の観測を開始している(第3.1表). これらの地点は、大気全体の温室効果ガスの変化 動向を見ることを目的として、いずれも人間活動 が盛んな地域から一定距離離れた場所に位置して おり、東アジア地域の観測点として世界的にも重 要な観測点となっている.

また、海洋における観測については、1989 (平成元)年に海洋気象観測船(凌風丸)で 北西太平洋域の二酸化炭素観測を開始して以 降,現在は国際連合教育科学文化機関(United Nations Educational, Scientific and Cultural Organization: UNESCO) の政府間海洋学委員 会 (Intergovernmental Oceanographic Commission: IOC) に設置された国際海洋炭素調整計画 (International Ocean Carbon Coordination Project: IOCCP)のもと2隻(凌風丸,啓風丸)体制で洋 上大気中及び海水中の温室効果ガスの観測を継続 している. 2010 (平成 22) 年からは、海洋と大 気の間の二酸化炭素交換量を正確に把握し、大気 中の濃度に及ぼす海洋の役割を定量的に明らかに するため,海洋気象観測船の観測機能の強化を図 って海洋内部の二酸化炭素濃度等の観測も行って いる.

これらの気象庁における定常観測のほか,気象 庁気象研究所と独立行政法人国立環境研究所は, 環境省,日本航空株式会社,財団法人日航財団等 の支援のもと,温室効果ガス観測の一環として, 日本とオーストラリア間の定期便をはじめとす る民間航空機を利用した南北両半球太平洋上空8 ~13kmにおける温室効果ガス観測を行っている (Matsueda *et al.*, 2008; Sawa *et al.*, 2008).

3.2 現在の観測網が抱える課題

人為起源の温室効果ガスは、その多くが地球表 面で排出され、大気の循環により上空に拡がって いく.

二酸化炭素などの温室効果ガスの観測は,第 3.2 図に示すとおり地上や海洋における観測が中 心となって行われているため、大気全体の状況を 詳細に把握するまでには至っていない.

近年,宇宙航空研究開発機構(JAXA)と環境 省が共同で開発する温室効果ガス観測技術衛星 「いぶき」(GOSAT)など,人工衛星からのリモ ートセンシングによる観測も実施されてきている が,航空機を利用した温室効果ガスの観測は飛行 航路上における濃度を補正なしで直接的に精度よ く観測できることから,大気全体の状況を詳細に 把握するための観測手段の一つとして期待されて いる.

第3.1 図 気象庁における温室効果ガスの観測網

第 3.1 表	気象庁の)陸上3地点	(における温	1室効果ガス
<u>4</u>	戸の観測の種	類及び開始	年	
5		r	1	

観測点種類	綾里	南鳥島	与那国島
二酸化炭素	1987年1月~	1993年3月~	1997年1月~
メタン	1991年1月~	1994年1月~	1998年1月~
一酸化炭素	1991年1月~	1994年1月~	1998年1月~
地上オゾン	1990年1月~	1994年1月~	1997年1月~
一酸化二窒素	1990年1月~		
フロン	1990年1月~		
1,1,1-トリクロロエタン	1991年1月~		
四塩化炭素	1991年1月~		

 第 3.2 図 WMO/GAW 計画の温室効果ガス世界資料センター(WDCGG)で収集された二酸化炭素の観測データの 観測点(2010年11月30日現在.●:陸上,●:船舶,●:航空機)

4. 気象庁における航空機観測

気象庁では,現在の観測網をさらに強化して 大気中の温室効果ガスの循環を把握するため, 上空で採取した大気試料を気象庁本庁に持ち帰 り,二酸化炭素,メタン,一酸化二窒素及び一 酸化炭素の濃度を分析する,航空機を利用した 上空の温室効果ガス観測を2011(平成23)年 より開始することとした.その手法や得られた データなどについて本項で紹介する.

4.1 航路及び使用する航空機

上空の温室効果ガス観測を実施する航路とし て,防衛省海上自衛隊厚木航空基地(以下「厚 木基地」という.) – 南鳥島間の北西太平洋上 の航路(第4.1図)を選定した.この航路で観 測を実施する理由は,当該海域で海洋気象観測 船によって海洋の温室効果ガスの観測を実施し ていること,航路近くに気象庁の陸上観測点(綾 里,南鳥島)があることにより,陸・海・空の 観測データを総合的に解析することが可能とな るためである.

観測に利用する航空機については,毎年防衛 省に業務協力依頼を行い,人員交替や物資等の 補給を目的にこの航路上を月1回飛行している 航空自衛隊のC-130H輸送機(写真4.1)を使 用する.民間航空機が飛行する高度は通常およ そ10,000mであるのに対し,この輸送機が飛行 する高度はおよそ6,000mと低いため,これま であまり観測が行われていなかった対流圏中層 における観測が可能である.また,この航空機 は,厚木基地-南鳥島間(約2,000km)をおよ そ4時間かけて飛行する.

4.2 大気試料の採取

大気試料の採取は,月1回の飛行における往路(往路で実施できなかった場合には復路)にて,気象研究所と共同で開発した航空機採取型温室効果ガス観測装置(大気採取部)を航空機に持ち込んで実施する.

大気採取部は,航空機内にある外気吹き出し ロへの接続部,除湿管等を含む座席までの配管, 大気試料を詰めるための手回しポンプ及び採取

第4.1 図 気象庁による上空の温室効果ガス観測にお いて大気試料の採取を行う範囲

写真 4.1 航空自衛隊の C-130H 輸送機

用容器(フラスコ), 圧力計及び流量計で構成さ れている.配管等の接続はもとより,ポンプや各 バルブの操作もすべて搭乗する気象庁職員が手動 で行う.これにより,機体を改造することなく, また電源を用いることなく航空機内で外気の採取 を行うことを可能としている.全体の模式図を第 4.2 図に示す.

(1) 接続部及び座席までの配管

航空機内にある空調用の外気吹き出し口に,専 用の接続器具を用いて採取用のテフロン管(外径 1/4 インチ,長さ約 10m)を接続する(写真 4.2).

与圧されている機内に送り込まれる機外の空気 は、エンジン前部の空気取り入れ口から取り込ま れた後コンプレッサにより圧縮され、熱交換や除 湿を経て機内にある外気吹き出し口より吹き出し ており、機内空気を取り込むことなく外気を採取

第4.2 図 航空機採取型温室効果ガス観測装置(大気採取部)の模式図

写真 4.2 外気吹き出し口との接続部

できる.採取した大気試料の採取位置の時間的ず れを小さくするため,機内配管で外気が滞留しな いよう吹き出し口を塞がず,機内に外気が吹き出 す状態を維持しながら採取している.

(2) 除湿管等を含む配管

気象庁本庁に持ち帰り分析するまでの間,フラ スコ内での試料濃度に変化を生じさせないよう, 採取時に大気試料を除湿しておく必要がある.こ のため,外気吹き出し口よりフラスコ等を設置し ている座席まで機外の空気を導入する配管(テフ ロン管)に乾燥剤である過塩素酸マグネシウムを 詰めた除湿管を接続(写真4.3)し,これに大気 試料を通して除湿する.通常の除湿では大掛かり な装置が必要であるが,上空の大気は露点温度が 低いため,数回の飛行ごとに過塩素酸マグネシウ ムを詰め替えることで,このような簡単な装置で

写真4.3 除湿管(上)及び除湿管に過塩素酸マグネ シウムを詰めた状態(下)

も採取した大気試料を十分に除湿することができる.

また,除湿管の後段にフィルターを接続し,除 湿後の大気試料を除塵している.

(3) ポンプ

機内ではバッテリーを含め電源を使用できない ことに加え、今回の観測対象である物質の濃度変 化への影響を考慮し、手回し式ダイヤフラムポン プ(隔膜の往復により吸引・吐出を行う.写真 4.4)を用いることとした.この手回しポンプを 航空機に搭乗した職員が回すことにより、大気試 料をフラスコに加圧充填する.

(4)フラスコ

除湿管を通した大気試料は、クイックコネクタ ーをつけたフラスコ(写真 4.4, 第 4.1 表)に封 入される.大気試料の保存には、容器内面におけ

写真4.4 大気試料採取に使用するフラスコ(左上:筐 体格納時,左下:単体)と手回し式ダイヤフラ ムポンプ(右)

第4.1表 大気試料採取に使用するフラスコの仕様

〇 サイズ:直径 100×300mm
〇 重量:350g
○ 容量 : 1.7 リットル
〇 内面処理:電解研磨及びSiコーティング
〇 材質:チタン
〇 充填可能圧力:最大 約 10 気圧 (1.0MPa)
○ 前処理・加埶直空引き

る物質の放出や吸着,破壊が少ないものを用いる 必要があるのに加え,航空機観測ではなるべく軽 量化するとともに機内や運搬中に容器の破損が生 じないよう考慮しなければならない.このため, 軽量で堅牢なチタン製のフラスコを採用すること とし,また,内面に電解研磨したのちアモルファ スシリコン(ケイ素(Si)を主体とする非晶質半 導体)でコーティングを施して,ガラス製のフラ スコと同様,その内面で採取した大気試料の変質 がほとんど生じない高い保存性を確保している.

このフラスコについては,容器内面に付着した 有機物やごみなどを取り除くため,使用(採取) 前にはその都度,気象庁本庁において,あらかじ め前処理と呼ぶ加熱真空引き処理を行っている. この処理では,フラスコを130℃で6~8時間程 度加熱しながら,内圧が100万分の1気圧(10⁻¹Pa) のオーダーになるまで真空引きしており,大気試 料の採取直前まではこの真空状態を保っている.

(5) 採取作業

航空機観測を実施するため、気象庁地球環境・ 海洋部環境気象管理官付の職員2名が航空機に搭 乗(写真4.5)する.このうち1名は手回し式ダ イヤフラムポンプを用いてフラスコへ大気試料 を充填している.6リットル/分以上の流量で約 1分をかけてフラスコ内空気を外気で置換(前処 理直後のフラスコにおける処理;一度大気を導入 した場合には更に数分の置換時間を要する)した のち、内圧がおおよそ0.3MPa(機内の与圧に対 する相対圧)となるまで充填する.充填に要する 時間は、置換に要する時間を含め約2分である. この作業を巡航高度にて約10分(距離にして約 100km)ごとに20回、降下中に4回繰り返し、 計24本の大気試料を採取している.

もう1名は,航空機のコックピットにいる自衛 隊乗組員と連絡を取り,航空機の位置(緯度,経度, 高度)を自衛隊乗組員が記録するタイミングを伝 達するとともに,採取にあたって考慮する必要が ある航空機の上昇・降下などに関する情報を得て いる.航空機の位置記録については,今後,気象 庁職員が持ち込む携帯型 GPS 受信機の利用を検 討している.

4.3 分析手法

大気試料の分析は、同じく気象研究所と共同で 開発した航空機採取型温室効果ガス観測装置(分 析部)(写真 4.6,第 4.3 図)により実施する.採 取した大気試料の変質が少ないフラスコを用いて いるものの、採取時の大気濃度を確実に得るため に採取後可能な限り速やかに分析を行っている.

分析部は,採取した大気試料をできるだけ有効 に利用するため,露点温度-60℃の除湿装置の後 段に一酸化炭素分析計,メタン分析計,一酸化二 窒素分析計,二酸化炭素分析計を並列に配して, 少ない試料で分析が実施できるよう,各分析計に 接続する配管を工夫している.これにより,フラ スコから導入した大気試料を同時に各分析計に導 入して,一度にすべての要素の分析を行うことを

写真 4.5 採取の様子

写真4.6 航空機採取型温室効果ガス観測装置(分析部) (気象庁本庁地下1階に設置)

第4.3 図 航空機採取型温室効果ガス観測装置(分析部)の流路図

可能としている.分析部はパーソナルコンピュー タによる自動制御が可能であり,同時に接続でき るフラスコは6本である.

気象庁ではこれまで、メタン、一酸化炭素、一酸化二窒素の観測において、ガスクロマトグラフ や非分散型赤外線吸収法分析計(Non Dispersive InfraRed: NDIR)を使用していた。今回、メタン については波長スキャンキャビティリングダウ ン分光光度計(Wavelength-Scanned Cavity Ring Down Spectroscopy: WS-CRDS)(Crosson, 2008)を、 一酸化二窒素についてはキャビティ増強レーザー 吸収分光分析計(off-axis Integrated Cavity Output Spectroscopy: off-axis ICOS)(Baer *et al.*, 2002) を,一酸化炭素については真空紫外共鳴蛍光式分 析計(Vacuum Ultraviolet Resonance Fluorescence: VURF)(Gerbig *et al.*, 1999)を採用した(第4.2表). 新しい測定原理を用いたこれらの分析計は,電源 投入後の立ち上がりが早いことから従来の分析計 と比較して測定可能となるまでの時間が大幅に短 く,2秒間隔での分析が可能であり約10分に1 回分析を行うガスクロマトグラフと比較して安定 的な分析が行えるほか,ガスクロマトグラフ分析 に用いる放射性物質や燃焼用のガスなどを必要と しないため,安全かつ効率的な運用ができるとい うメリットがある.

分析においては、これらの分析計に約10分間 大気試料を導入し、出力が安定する試料導入後7 ~10分の3分間のデータを平均して観測値を求 めている。分析計のセルや配管内が大気試料に置 換されるまでに時間を要すること、分析計の反応 時間にタイムラグがあることなどから、導入直後 の出力は不安定と考えられるため、それらは採用 していない(第4.4 図).

4.4 濃度の決定方法

WMO 基準のトレーサブルな世界的体系のも と、大気試料を高精度に観測するためには、基準 となる標準ガスの濃度と比較して大気試料の濃度 を求める必要がある.

航空機採取型温室効果ガス観測装置(分析部) では、精製空気をベースとして、二酸化炭素、メ タン、一酸化炭素、一酸化二窒素の各要素ガスを 充填した、濃度の異なる5本の混合ガスを標準ガ スとして使用している.気象庁の陸上や海洋での 観測と同様、気象庁本庁に整備している較正装置 を用いて各要素ガスの濃度を決定している.

本観測では、6本のフラスコを3本ずつに分け、 それぞれを標準ガスの分析で挟み込むスケジュー ルで1シリーズの分析を行うことにしている.す なわち、(標準ガス5本)→(フラスコ3本)→(標 準ガス5本)→(別のフラスコ3本)→(標準ガ ス5本)の順番で分析を行う(第4.5図).フラ スコの測定前後で測定した標準ガスの測定結果を 使って決定した2次の検量線から、フラスコ内の 大気試料の濃度を求めている.濃度の決定方法に 関する詳細については、坪井ほか(2012)を参照 願いたい.

4.5 データの公開

このように得られたデータについては、気象庁 が運営している WMO/GAW 計画温室効果ガス世 界資料センター(World Data Centre for Greenhouse

航空機採取型温室効果ガス観測装置 陸上の連続観測で使用している 分析計 (分析部) で使用している分析計 二酸化炭素 C0, 非分散型赤外線吸収法分析計 (NDIR) 非分散型赤外線吸収法分析計 (NDIR) 波長スキャンキャビティリング ダウン分光光度計 (WS-CRDS) メタン CH₄ ガスクロマトグラフ/ 水素炎イオン化検出器 (GC-FID) ガスクロマトグラフ/ 還元性ガス検出器 (GC-RGD) 一酸化炭素 真空紫外共鳴蛍光式分析計 CO (VURF キャビティ増強レーザー吸収 分光光度計(off-axis ICOS) 一酸化二窒素 ガスクロマトグラフ 電子補捉型検出器 (GC-ECD)

第4.2 表 気象庁における陸上及び航空機での温室効

果ガス観測で使用している分析計

第4.4 図 測定中の変動(二酸化炭素の例)
個々の線は異なるフラスコを表す.分析時間が7~
10分では数値が安定していることがわかる.

第4.5 図 分析の流れ(メタンの例) 青が標準ガスの測定,赤が大気試料の測定.

Gases: WDCGG) のホームページ(第4.6図; http://ds.data.jma.go.jp/gmd/wdcgg/jp/wdcgg_j.html) で公開しているほか,気象庁ホームページ(第 4.7図; http://www.jma.go.jp/jma/index.html) でも 公開している.

第4.7 図 気象庁ホームページでの公開の例

5. 観測成果の例

ここでは、これまでに得られた観測データの一 例を紹介する.ただし、観測データについては、 標準ガスの今後の較正結果によって値が変更され ることがあり得る.

2011(平成23)年3月15日9時(00Z)の地 上天気図(第5.1図)を見ると厚木基地-南鳥島 間に低気圧が解析されており,これに対応する場 所においては,二酸化炭素やメタンの増加がみら れた(第5.2図の赤丸部分).これは,温室効果 ガスの排出が多いユーラシア大陸からの空気塊が 低気圧の移動に伴って移動した事例を捉えている と考えられる.

また,航空機降下時には,これらの濃度の上昇 がみられた(第5.2図の青丸部分).春の初め頃 は陸上の植物活動(光合成)がそれほど活発では なく,生物の呼吸活動がまだ勝っているため,二 酸化炭素の濃度が上空よりも地上付近において高 い状況にある.今回得られた二酸化炭素の観測結 果はこのこととよく対応している.

第5.1 図 2011 年 3 月 15 日 9 時 (00Z) の地上天気図

6. おわりに

気象庁が1987(昭和62)年に綾里で二酸化炭 素の観測を開始し,四半世紀が経過した.この間 も、人為起源による温室効果ガスの排出は続いて おり、地球の平均気温も上昇し続けている.気象 庁が主要な温室効果ガスを高精度で観測しその動 向を監視し続けてきたことは、精度の高いデータ を科学的見地に立って長期にわたり提供し、気候 変動に伴う地球環境の変化の具体的かつ正確な把 握に寄与しているという点で世界的に評価される とともに、2010(平成22)年には大気環境観測 所が人事院総裁賞を受賞するなど、国内でも高い 評価を受けている.

また,気象庁では,温室効果ガスの分野で,観 測のみならず精度の高い解析作業を行うことが求 められている.今回の航空機による観測を含む長 期にわたる温室効果ガスの観測データを使用し, 温室効果ガスの濃度分布の地球全体にわたる解析 結果に関する情報をさらに充実させることによっ て,温室効果ガスの収支の把握や循環に関するメ カニズムの解明に寄与していくこととしたい.

これら気象庁が進めている温室効果ガスの観測 及び解析によって、地球温暖化による気温の上昇 とそれに伴う気象や気候の変化をより正確に予測 することが可能となり、ひいては気候変動の適応 策や緩和策の立案・検証に貢献できるものと考え ている.

謝 辞

本観測の実施にあたっては,航空機を運航する 防衛省,海上自衛隊,航空自衛隊に多大なる協力・ 支援をいただきました.この紙面をお借りして感 謝申し上げます. 参考文献

- Baer, D. S., J. B. Paul, M. Gupta, and A. O'Keefe (2002): Sensitive absorption measurements in the nearinfrared region using off-axis integrated-cavity-output spectroscopy. Appl. Phys. B, doi:10.1007/s00340-002-0971-z.
- Crosson, E. R. (2008): A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor. Appl. Phys., **B92**, 403-408.
- Gerbig, C., S. Schmitgen, D. Kley, A. Volz-Thomas, K. Dewey, D. Haaks (1999): An improved fast-response vacuum-UV resonance fluorescence CO instrument. J. Geophys. Res., 104(D1), 1699-1704.
- IPCC (2007) : Climate Change 2007. The Physical Scientific Basis. Contribution of Working Group I to the Forth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Matsueda, H., T. Machida, Y. Sawa, Y. Nakagawa, K. Hirotani, H. Ikeda, N. Kondo, and K. Goto (2008): Evaluation of atmospheric CO₂ measurements from new flask air sampling of JAL airliner observations. Pap. Meteorol. Geophys., 59, 1–17.
- Sawa, Y., T. Machida, and H. Matsueda (2008): Seasonal variations of CO₂ near the tropopause observed by commercial aircraft. J. Geophys. Res., 113, D23301, doi: 10.1029/2008JD010568.
- 坪井一寛,松枝秀和,澤庸介,丹羽洋介,中村雅道, 久保池大輔,岩坪昇平,齊藤和幸,花宮義和,辻 健太郎,大森英裕,西秀紘 (2012): C-130H 輸送機 を利用した温室効果ガス観測のためのフラスコ採 取とその高精度測定システムの開発.気象研究所 技術報告第67号